Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36982579

RESUMO

Contemporary medicine has been confronted by multidrug resistance. Therefore, new antibiotics are sought to alleviate the problem. In this study, we estimated the effect of the positioning and extent of lipidation (mainly octanoic acid residue) in the KR12-NH2 molecule on antibacterial and hemolytic activities. The effect of the conjugation of benzoic acid derivatives (C6H5-X-COOH, where X: CH2, CH2-CH2, CH=CH, C≡C, and CH2-CH2-CH2) with the N-terminal part of KR12-NH2 on biological activity was also studied. All analogs were tested against planktonic cells of ESKAPE bacteria and reference strains of Staphylococcus aureus. The effect of lipidation site on the helicity of the KR12-NH2 analogs was studied using CD spectroscopy. The ability of the selected peptides to induce the aggregation of POPG liposomes was evaluated with DLS measurements. We demonstrated that both the site and extent of peptide lipidation play an essential role in the bacterial specificity of the lipopeptides. Most of the C8α-KR12-NH2 (II) analogs that were more hydrophobic than the parent compound were also more hemolytic. A similar relationship was also found between the α-helical structure content in POPC and hemolytic activity. It is worth emphasizing that in our study, the highest selectivity against S. aureus strains with an SI value of at least 21.11 exhibited peptide XII obtained by the conjugation of the octanoic acid with the N-terminus of retro-KR12-NH2. All lipidated analogs with the highest net charge (+5) were the most selective toward pathogens. Therefore, the overall charge of KR12-NH2 analogs plays pivotal role in their biological activity.


Assuntos
Antibacterianos , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Caprilatos/farmacologia , Lipopeptídeos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
2.
Molecules ; 29(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202673

RESUMO

The present work describes the complexation of the anti-inflammatory sialorphin derivative Pal-Lys-Lys-Gln-His-Asn-Pro-Arg (palmitic acid-lysine-lysine-glutamine-histidine-asparagine-proline-arginine) with Cu(II) ions in an aqueous solution, at a temperature of 25.0 ± 0.1 °C, over the whole pH range. The complexing properties were characterized by potentiometric and UV-Vis spectrophotometric methods. The potentiometric method was used to calculate the logarithms of the overall stability constants (log ß) and the values of the stepwise dissociation constants (pKa) of the studied complexes. The percentage of each species formed in an aqueous solution was estimated from the species distribution curve as a function of pH. The absorbance (A) and molar absorption coefficient (ε) values for the Cu(II)-sialorphin derivative system were determined with UV-Vis spectroscopy. Our studies indicate that the sialorphin derivative forms stable complexes with Cu(II) ions, which may lead to future biological and therapeutic applications.


Assuntos
Asparagina , Peptídeos , Prolina , Arginina , Glutamina , Histidina , Lisina , Ácido Palmítico , Aminoácidos , Íons , Anti-Inflamatórios
3.
Int J Mol Sci ; 23(22)2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36430928

RESUMO

Pharmacotherapy for inflammatory bowel disease (IBD) is difficult, and some patients do not respond to currently available treatments. Therefore, the discovery of novel anti-IBD agents is imperative. Our aim was the synthesis of lipidated analogs of sialorphin and the in vitro characterization of their effect on the degradation of Met-enkephalin by neutral endopeptidase (NEP). We also investigated in vivo whether the most active inhibitor (peptide VIII) selected in the in vitro studies could be a potential candidate for the treatment of colitis. Peptides were synthesized by the solid-phase method. Molecular modeling technique was used to explain the effect of fatty acid chain length in sialorphin analogs on the ligand-enzyme interactions. The anti-inflammatory effect was evaluated in the dextran sulphate sodium (DSS)-induced model of colitis in mice. Peptide VIII containing stearic acid turned out to be in vitro the strongest inhibitor of NEP. We have also shown that the length of the chain of stearic acid fits the size of the grove of NEP. Peptides VII and VIII exhibited in vivo similar anti-inflammatory activity. Our results suggest that lipidation of sialorphin molecule is a promising direction in the search for NEP inhibitors that protect enkephalins.


Assuntos
Colite , Neprilisina , Camundongos , Animais , Encefalinas/farmacologia , Colite/induzido quimicamente , Colite/tratamento farmacológico , Inflamação
4.
J Fungi (Basel) ; 8(8)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012859

RESUMO

Aspergillosis, which is mainly sustained by Aspergillus fumigatus, includes a broad spectrum of diseases. They are usually severe in patients with co-morbidities. The first-line therapy includes triazoles, for which an increasing incidence of drug resistance has been lately described. As a consequence of this, the need for new and alternative antifungal molecules is absolutely necessary. As peptides represent promising antimicrobial molecules, two lipopeptides (C14-NleRR-NH2, C14-WRR-NH2) were tested to assess the antifungal activity against azole-resistant A. fumigatus. Antifungal activity was evaluated by determination of minimum inhibitory concentrations (MICs), time-kill curves, XTT assay, optical microscopy, and checkerboard combination with isavuconazole. Both lipopeptides showed antifungal activity, with MICs ranging from 8 mg/L to 16 mg/L, and a dose-dependent effect was confirmed by both time-kill curves and XTT assays. Microscopy showed that hyphae growth was hampered at concentrations equal to or higher than MICs. The rising antifungal resistance highlights the usefulness of novel compounds to treat severe fungal infections. Although further studies assessing the activity of lipopeptides are necessary, these molecules could be effective antifungal alternatives that overcome the current resistances.

5.
Antibiotics (Basel) ; 10(10)2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34680791

RESUMO

BACKGROUND: LL-37 is the only human antimicrobial peptide that belongs to the cathelicidins. The aim of the study was to evaluate the efficacy of LL-37 in the management of MRSA-infected surgical wounds in mice. METHODS: A wound on the back of adult male BALB/c mice was made and inoculated with Staphylococcus aureus. Two control groups were formed (uninfected and not treated, C0; infected and not treated, C1) and six contaminated groups were treated, respectively, with: teicoplanin, LL-37, given topically and /or systemically. Histological examination of VEGF expression and micro-vessel density, and bacterial cultures of wound tissues, were performed. RESULTS: Histological examination of wounds in the group treated with topical and intraperitoneal LL-37 showed increased re-epithelialization, formation of the granulation tissue, collagen organization, and angiogenesis. CONCLUSIONS: Based on the mode of action, LL-37 has a potential future role in the management of infected wounds.

6.
Future Microbiol ; 16: 221-227, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33646013

RESUMO

Overview: The global spread of antibiotic resistance represents a serious threat for public health. Aim: We evaluated the efficacy of the antimicrobial peptide LL-37 as antimicrobial agent against multidrug-resistant Escherichia coli. Results: LL-37 showed good activity against mcr-1 carrying, extended spectrum ß-lactamase- and carbapenemase-producing E. coli (minimum inhibitory concentration, MIC, from 16 to 64 mg/l). Checkerboard assays demonstrated synergistic effect of LL-37/colistin combination against all tested strains, further confirmed by time-kill and post antibiotic effect assays. MIC and sub-MIC concentrations of LL-37 were able to reduce biofilm formation. Conclusion: Our preliminary data indicated that LL-37/colistin combination was effective against multidrug-resistant E. coli strains and suggested a new possible clinical application.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Colistina/farmacologia , Infecções por Escherichia coli/microbiologia , Escherichia coli/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla , Sinergismo Farmacológico , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Catelicidinas
7.
Pharmacol Rep ; 73(1): 163-171, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33219923

RESUMO

INTRODUCTION: Inflammatory bowel diseases (IBD) are a group of chronic gastrointestinal tract disorders with complex etiology, with intestinal dysbiosis as the most prominent factor. In this study, we assessed the anti-inflammatory and antibacterial actions of the human cathelicidin LL-37 and its shortest active fragment, KR-12 in the mouse models of colitis. MATERIALS AND METHODS: Mouse models of colitis induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS) and dextran sulfate sodium (DSS) were used in the study. The extent of inflammation was evaluated based on the macro- and microscopic scores, quantification of myeloperoxidase (MPO) activity and microbiological analysis of stool samples. RESULTS: A preliminary study with LL-37 and KR-12 (1 mg/kg, ip, twice daily) showed a decrease in macroscopic and ulcer scores in the acute TNBS-induced model of colitis. We observed that KR-12 (5 mg/kg, ip, twice daily) reduced microscopic and ulcer scores in the semi-chronic and chronic TNBS-induced models of colitis compared with inflamed mice. Furthermore, qualitative and quantitative changes in colonic microbiota were observed: KR-12 (5 mg/kg, ip, twice daily) decreased the overall number of bacteria, Escherichia coli and coli group bacteria. In the semi-chronic DSS-induced model, KR-12 attenuated intestinal inflammation as demonstrated by a reduction in macroscopic score and colon damage score and MPO activity. CONCLUSIONS: We demonstrated that KR-12 alleviates inflammation in four different mouse models of colitis what suggests KR-12 and cathelicidins as a whole are worth being considered as a potential therapeutic option in the treatment of IBD.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Catelicidinas/química , Catelicidinas/farmacologia , Colite/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Animais , Colite/psicologia , Colo/patologia , Sulfato de Dextrana , Fezes/microbiologia , Humanos , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/psicologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Peroxidase/metabolismo , Ácido Trinitrobenzenossulfônico
8.
Molecules ; 25(24)2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321720

RESUMO

BACKGROUND: the pharmacological treatment and/or maintenance of remission in inflammatory bowel diseases (IBDs) is currently one of the biggest challenges in the field of gastroenterology. METHOD: our aim was the synthesis of homo- and heterodimers of natural enkephalinase inhibitors (opiorphin; sialorphin; spinorphin) and the in vitro characterization of their effect on the degradation of enkephalin by neutral endopeptidase (NEP) and stability in human plasma. We investigated the in vivo heterodimer of Cys containing analogs of sialorphin and spinorphin (peptide X) in a mouse model of colitis. The extent of inflammation was evaluated based on the microscopic score; macroscopic score; ulcer score, colonic wall thickness, colon length and quantification of myeloperoxidase activity. RESULTS: we showed that the homo- and heterodimerization of analogs of sialorphin, spinorphin and opiorphin containing Cys residue at the N-terminal position resulted in dimeric forms which in vitro exhibited higher inhibitory activity against NEP than their parent and monomeric forms. We showed that peptide X was more stable in human plasma than sialorphin and spinorphin. Peptide X exerts potent anti-inflammatory effect in the mouse model of colitis. CONCLUSION: we suggest that peptide X has the potential to become a valuable template for anti-inflammatory therapeutics for the treatment of gastrointestinal (GI) tract inflammation.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Neprilisina/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Anti-Inflamatórios/farmacocinética , Produtos Biológicos/farmacocinética , Biomarcadores , Fenômenos Químicos , Colite/tratamento farmacológico , Dimerização , Modelos Animais de Doenças , Estabilidade de Medicamentos , Inibidores Enzimáticos/farmacocinética , Humanos , Imuno-Histoquímica , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Peptídeos/química , Peptídeos/farmacologia
9.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019109

RESUMO

An increasing number of multidrug-resistant pathogens is a serious problem of modern medicine and new antibiotics are highly demanded. In this study, different n-alkyl acids (C2-C14) and aromatic acids (benzoic and trans-cinnamic) were conjugated to the N-terminus of KR12 amide. The effect of this modification on antimicrobial activity (ESKAPE bacteria and biofilm of Staphylococcus aureus) and cytotoxicity (human red blood cells and HaCaT cell line) was examined. The effect of lipophilic modifications on helicity was studied by CD spectroscopy, whereas peptide self-assembly was studied by surface tension measurements and NMR spectroscopy. As shown, conjugation of the KR12-NH2 peptide with C4-C14 fatty acid chains enhanced the antimicrobial activity with an optimum demonstrated by C8-KR12-NH2 (MIC 1-4 µg/mL against ESKAPE strains; MBEC of S. aureus 4-16 µg/mL). Correlation between antimicrobial activity and self-assembly behavior of C14-KR12-NH2 and C8-KR12-NH2 has shown that the former self-assembled into larger aggregated structures, which reduced its antimicrobial activity. In conclusion, N-terminal modification can enhance antimicrobial activity of KR12-NH2; however, at the same time, the cytotoxicity increases. It seems that the selectivity against pathogens over human cells can be achieved through conjugation of peptide N-terminus with appropriate n-alkyl fatty and aromatic acids.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Ácidos Graxos/química , Fragmentos de Peptídeos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Eritrócitos/efeitos dos fármacos , Humanos , Imidazóis/química , Lipopeptídeos , Nylons/química , Fragmentos de Peptídeos/química , Infecções Estafilocócicas/microbiologia , Propriedades de Superfície , Catelicidinas
10.
J Glob Antimicrob Resist ; 21: 203-210, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31678322

RESUMO

OBJECTIVES: Antimicrobial research is being focused to look for more effective therapeutics against antibiotic-resistant infections such as those caused by methicillin-resistant Staphylococcus aureus (MRSA). In this regard, antimicrobial peptides (AMPs) appear to be a promising solution. The aim of the present study was to investigate the potential activity of temporin A, citropin 1.1, CA(1-7)M(2-9)NH2 and Pal-KGK-NH2 in synergistic activity against MRSA biofilms developed on polystyrene surface (PSS) and central venous catheter (CVC). METHODS: The study was subdivided into distinct phases to assess the ability of AMPs to inhibit biofilm formation, to identify possible synergy between AMPs, and to eradicate preformed biofilms on PSS and CVC using AMPs alone or in combination. RESULTS: Activity of the AMPs was particularly evident in the inhibition of biofilm formation on PSS and CVC, whilst the eradication of preformed biofilms was more difficult and was reached only after 24h of contact. The synergistic activity of AMP combinations, selected by their fractional inhibitory concentration index (FICI), led to an improvement in the performance of all of the molecules in the removal of different biofilms. CONCLUSION: Overall, AMPs could represent the next generation of antimicrobial agents for a prophylactic or therapeutic tool to control biofilms of antibiotic-resistant bacteria and/or biofilm-associated infections on different medical devices.


Assuntos
Biofilmes/efeitos dos fármacos , Contaminação de Equipamentos/prevenção & controle , Staphylococcus aureus Resistente à Meticilina , Poliestirenos , Proteínas Citotóxicas Formadoras de Poros/farmacologia , Antibacterianos/farmacologia , Cateteres Venosos Centrais/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos
11.
Amino Acids ; 51(8): 1201-1207, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31302778

RESUMO

Rat sialorphin (Gln-His-Asn-Pro-Arg) is a natural blocker of neprilysin (NEP) that belongs to the family of endogenous opioid peptide-degrading enzymes. Studies have confirmed the efficiency of sialorphin in blocking the activity of NEP, both in vitro and in vivo. It has been demonstrated that this inhibitor has a strong analgesic, anti-inflammatory, immunological and metabolic effect either directly or indirectly by affecting the level of Met/Leu-enkephalins. In this work, sialorphin and their 12 analogues were synthesised using the solid-phase method. The effect of the peptides on the degradation of Met-enkephalin by NEP and metabolic degradation in human plasma was investigated in vitro. We show that the change in the N-terminal amino acid configuration from L to D in almost all peptides, except D-Arg-His-Asn-Pro-Arg (peptide XI), led to the abolition of their inhibitory activity. With molecular modelling technique we explained the structural properties of the L and D-arginine located on the N-terminal part of the peptide. The detailed analysis of the protein binding pocket allowed us to explain why D-arginine is so unique among all D residues. Peptide XI showed the highest stability among the tested peptides in human plasma. For instance sialorphin after a 2-hour incubation in human plasma was almost completely decomposed, while the level of peptide XI dropped to 45% after 48 h under these conditions.


Assuntos
Encefalina Metionina/metabolismo , Modelos Moleculares , Neprilisina/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Humanos , Técnicas In Vitro
12.
Med Microbiol Immunol ; 208(6): 877-883, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31214759

RESUMO

In the past few years the increasing incidence of hospital infections with Acinetobacter baumannii, especially in immunocompromised patients, and its proneness to develop multidrug resistance have been raising considerable concern. This study examines the antimicrobial and antibiofilm activity of protegrin 1 (PG-1), an antimicrobial peptide from porcine leukocytes, against A. baumannii strains isolated from surgical wounds. PG-1 was tested both alone and combined with the antibiotics commonly used in clinical settings. Its antimicrobial activity was evaluated by determination of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC), checkerboard assays, and time-kill experiments. Its effects on biofilm inhibition/eradication were tested with crystal violet staining. The strains were grown in subinhibitory or increasing PG-1 concentrations to test the development of resistance. Mammalian cell toxicity was tested by XTT assays. PG-1 MICs and MBCs ranged from 2 to 8 µg/ml. PG-1 was most active and demonstrated a synergistic interaction with colistin, a last resort antibiotic. Interestingly, antagonism was never observed. In time-kill experiments, incubation with 2 × MIC for 30 min suppressed all viable cells. PG-1 did not select resistant strains and showed a limited effect on cell viability, but it did exert a strong activity against multidrug-resistant A. baumannii. In contrast, in our experimental conditions it had no effect on biofilm inhibition/eradication. PG-1 thus seems to be a promising antimicrobial agent against multidrug-resistant Gram-negative infections.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Biofilmes/efeitos dos fármacos , Interações Medicamentosas , Ferida Cirúrgica/microbiologia , Acinetobacter baumannii/isolamento & purificação , Anti-Infecciosos/toxicidade , Peptídeos Catiônicos Antimicrobianos/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células HeLa , Humanos , Testes de Sensibilidade Microbiana , Coloração e Rotulagem
13.
Probiotics Antimicrob Proteins ; 11(3): 1042-1054, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30569430

RESUMO

Antimicrobial peptides (AMPs) are compounds widely distributed in nature that display activity against a broad spectrum of pathogens. Amphibian skin, as an organ rich in pharmacologically active peptides, appears to be an interesting source of novel AMPs. Aurein 1.2 (GLFDIIKKIAESF-NH2) is a short 13-residue antimicrobial peptide primarily isolated from the skin secretions of Australian bell frogs. In this study, the alanine scan of aurein 1.2 was performed to investigate the effect of each amino acid residue on its biological and physico-chemical properties. The biological studies included determination of minimum inhibitory concentration, activity against biofilm, and inhibitory effect on its formation. Moreover, the hemolytic activity as well as serum stability was determined. The hydrophobicity of peptides and their self-assembly were investigated using reversed-phase chromatography. In addition, their helicity was calculated from circular dichroism spectra. The results not only provided information on structure-activity relationship of aurein 1.2 but also gave insights into design of novel analogs of AMPs in the future.


Assuntos
Alanina/química , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Sequência de Aminoácidos , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bactérias/efeitos dos fármacos , Bactérias/crescimento & desenvolvimento , Dicroísmo Circular , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
14.
Curr Top Med Chem ; 18(24): 2127-2132, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30569865

RESUMO

BACKGROUND: Pseudomonas aeruginosa is a gram-negative pathogen, associated with a severe mortality rate. It is also difficult to treat due to numerous resistance mechanisms to a wide range of antibiotics. OBJECTIVE: Evaluate the activity of pexiganan, an antimicrobial peptide, in combination with two clinical antibiotics (azithromycin and tigecycline) that are not active against P. aeruginosa. METHODS: Ten clinical P. aeruginosa were isolated from urinary tract infections, blood culture, skin infections and respiratory tract infections. Minimum inhibitory concentrations (MICs) and synergies were evaluated by broth microdilution, checkerboard assays and time-kill studies. In vitro synergy was confirmed with an in vivo experiment using a murine model of sepsis. RESULTS: Pexiganan MICs were included between 2 and 16 mg/L. Tigecycline and azithromycin MICs were high as expected (4-64 mg/L and 32-256 mg/L, respectively). Pexiganan and azithromycin combination resulted to be additive or indifferent while tigecycline and pexiganan combination was synergic against seven out of ten P. aeruginosa and additive against the other strains. In vivo experiment confirmed the in vitro synergy, denoting a significative reduction of bacteria in mice treated with pexiganan and tigecycline combination. CONCLUSION: Antimicrobial peptides are molecules that could be useful in the fight against infections and pexiganan seems to be one of the most promising. Our results demonstrated that, in association with tigecycline, pexiganan administration could overcome antibiotic resistance and increase the effectiveness of treatment against P. aeruginosa sepsis.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Sepse/tratamento farmacológico , Sepse/microbiologia , Tigeciclina/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/administração & dosagem , Peptídeos Catiônicos Antimicrobianos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Quimioterapia Combinada , Células HeLa , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade , Tigeciclina/administração & dosagem , Tigeciclina/uso terapêutico
15.
Curr Top Med Chem ; 18(24): 2116-2126, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30345920

RESUMO

BACKGROUND: Antimicrobial research is being focused to look for more effective therapeutics against antibiotic-resistant infections caused by methicillin-resistant Staphylococcus aureus (MRSA). In this direction, antimicrobial peptides (AMP) appear as promising tool. OBJECTIVES: This study evaluated the antimicrobial activity of different AMPs (Citropin 1.1, Temporin A, Pexiganan, CA(1-7)M(2-9)NH2, Pal-KGK-NH2, Pal-KKKK-NH2, LL-37) against human MRSA clinical isolates. METHODS: The Minimum Inhibitory Concentration (MIC) was assessed for each AMP; then, the most active ones (Citropin 1.1, Temporin A, CA(1-7)M(2-9)NH2 and Pal-KGK-NH2) were tested against selected MRSA strains by time-kill studies. RESULTS: The lowest MIC value was observed for Pal-KGK-NH2 (1 µg/ml), followed by Temporin A (4- 16 µg/ml), CA(1-7)M(2-9)NH2 (8-16 µg/ml) and Citropin 1.1 (16-64 µg/ml), while higher MICs were evidenced for LL-37, Pexiganan and Pal-KKKK-NH2 (> 128 µg/ml). In time-kill experiments, Citropin 1.1 and CA(1-7)M(2-9)NH2 showed a relatively high percentage of growth inhibition (>30 %) for all the tested MRSA clinical isolates, with a dose-dependent activity resulting in the highest percentage of bacterial growth inhibition (89.39%) at 2MIC concentration. CONCLUSION: Overall, our data demonstrated the potential of some AMPs against MRSA isolates, such as Citropin 1.1 and CA(1-7)M(2-9)NH2, that represents a promising area of development for different clinical applications.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/química , Peptídeos Catiônicos Antimicrobianos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
16.
Amino Acids ; 50(8): 1083-1088, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29752565

RESUMO

Enkephalins are involved in a number of physiological processes. However, these peptides are quickly degraded by peptidases, e.g. the neutral endopeptidase (NEP). Inhibition of the enzymatic degradation of enkephalins is one of the possible approaches to prolong their activity. Selective inhibitor of NEP, sialorphin, is the attractive lead compound for enkephalins degradation studies. In this work, an alanine scan of sialorphin and a series of its hybrids with opiorphin, synthesised by the solid phase method, were performed. The effect of the peptides on degradation of Met-enkephalin by NEP in vitro was investigated. Molecular modelling technique was used to identify residues responsible for protein-ligand interactions. We showed that substitution of amino acids Gln1, Pro4 and Arg5 of sialorphin for Ala significantly reduced the half-life of Met-enkephalin in the presence of NEP. [Ala3]sialorphin displayed a higher inhibitory potency against NEP than sialorphin. Substitution of His2 for Ala led to a compound which was as active as lead compound. Sialorphin has a structure which hardly tolerates substitution in its sequence at positions 1, 4 and 5. The conversion of His2 for alanine in sialorphin is tolerated very well. The higher inhibitory potency of [Ala3]sialorphin than sialorphin against NEP is caused by removal of the hydrophilic residue (Asn) and a better fit of the peptide to the enzyme-binding pocket. The role of side chains of sialorphin in degradation of enkephalin by NEP has been explored. This study also provides an important SAR information essential for further drug design.


Assuntos
Alanina/química , Encefalina Metionina/metabolismo , Encefalinas/metabolismo , Neprilisina/antagonistas & inibidores , Oligopeptídeos/farmacologia , Peptídeos/farmacologia , Proteínas e Peptídeos Salivares/farmacologia , Acetilação , Sequência de Aminoácidos , Encefalinas/química , Modelos Moleculares , Oligopeptídeos/química , Peptídeos/química , Ligação Proteica , Conformação Proteica , Proteólise/efeitos dos fármacos , Proteínas e Peptídeos Salivares/química , Técnicas de Síntese em Fase Sólida
17.
Chem Biol Drug Des ; 92(1): 1387-1392, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29495100

RESUMO

Irritable bowel syndrome (IBS) is a chronic disease characterized by abdominal pain and changes in bowel habits. Patients with IBS comprise a significant portion of attendants at the outpatient clinics. Targeting intestinal opioid receptors was found successful in alleviating pain and diarrhea-two major symptoms of IBS. In this study, we aimed to evaluate a novel potential pharmacological option: the use of enkephalinase inhibitors in therapy of visceral pain occurring in the course of IBS. We thus assessed the antinociceptive efficacy of enkephalins: Leu-enkephalin and Met-enkephalin, and enkephalinase inhibitors: opiorphin and sialorphin in the mouse model of visceral pain induced by colorectal distension. Leu-enkephalin, Met-enkephalin, and sialorphin, but not opiorphin, at the dose of 1 mg/kg injected subcutaneously potently decreased the visceromotor response to colon distension as compared to control. To conclude, enkephalinase inhibitors are worth being considered as potential therapeutics in patients with chronic abdominal pain and/or changed bowel habits, that is, suffering from IBS.


Assuntos
Analgésicos/química , Encefalinas/química , Neprilisina/antagonistas & inibidores , Sequência de Aminoácidos , Analgésicos/uso terapêutico , Animais , Modelos Animais de Doenças , Encefalinas/uso terapêutico , Injeções Subcutâneas , Síndrome do Intestino Irritável/tratamento farmacológico , Síndrome do Intestino Irritável/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neprilisina/metabolismo
18.
Int J Pept Res Ther ; 23(4): 409-418, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29170620

RESUMO

Three novel analogues of salivary peptides as sialorphin (QHNPR) and opiorphin (QRFSR) were synthesized by the solid-phase method. The sequences of these ligands were following: AHNPR, QANPR and QRFPR. The aim of our work was investigation in what way some structural modifications may impact on coordination abilities of studied peptides. In this work we presented the interaction of pentapeptides with copper(II) ions in wide range of pH. To determine the coordination model of ligands there were carried out several studies by spectroscopy (UV-Vis, CD) methods and potentiometric measurements.

19.
Am J Transl Res ; 9(7): 3374-3386, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28804554

RESUMO

BACKGROUND: This study investigates the effects of the antimicrobial cationic peptide omiganan-alone and combined with the antibiotic imipenem-on colonic anastomosis healing in presence of intraperitoneal sepsis induced in a rodent model of cecal ligation and puncture (CLP). METHODS: Forty male Wistar rats were divided into 5 groups of 8 animals. Group 1 (control group) underwent laparotomy and cecal mobilization and the next day received left colon anastomosis. In group 2 (CLP without treatment), group 3 (CLP + imipenem), group 4 (CLP + omiganan), and group 5 (CLP + omiganan + imipenem), the left colon anastomosis was performed the day after CLP. Imipenem and omiganan were administered by intraperitoneal injection immediately before anastomosis construction and subsequently at 24 h intervals until the 7th postoperative day, when rats were sacrificed. Anastomotic bursting pressure was measured in situ. Tissue samples were collected for determination of hydroxyproline content and histological characteristics. RESULTS: Only rats receiving omiganan + imipenem displayed re-epithelialization, reduced neovascularization of granulation tissue, and a bursting pressure that was similar to that of controls. Omiganan-alone and combined with imipenem-was associated with a better control of inflammatory parameters than imipenem alone. In addition omiganan, like imipenem, counteracted the collagen depletion typical of sepsis. CONCLUSIONS: This experimental study demonstrates the efficacy of the new antimicrobial agent omiganan, alone and in combination with imipenem, in delaying the effects of intraperitoneal sepsis on colonic anastomosis healing and provides evidence of the value of omiganan as a therapeutic agent.

20.
Amino Acids ; 49(10): 1755-1771, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28756544

RESUMO

Increasing drug resistance of common pathogens urgently needs discovery of new effective molecules. Antimicrobial peptides are believed to be one of the possible solutions of this problem. One of the approaches for improvement of biological properties is reversion of the sequence (retro analog concept). This research is based on investigation of antimicrobial activity against Gram-positive, Gram-negative bacteria, and fungi, hemolysis of erythrocytes, interpretation of the circular dichroism spectra, measurement of counter-ion content, and assessment of the peptide hydrophobicity and self-assembly using reversed-phase chromatography. The experiments were conducted using the following peptides: aurein 1.2, CAMEL, citropin 1.1, omiganan, pexiganan, temporin A, and their retro analogs. Among the compounds studied, only retro omiganan showed an enhanced antimicrobial and a slightly increased hemolytic activity as compared to parent molecule. Moreover, retro pexiganan exhibited high activity towards Klebsiella pneumoniae, whereas pexiganan was in general more or equally active against the rest of tested microorganisms. Furthermore, the determined activity was closely related to the peptide hydrophobicity. In general, the reduced hemolytic activity correlates with lower antimicrobial activity. The tendency to self-association and helicity fraction in SDS seems to be correlated. The normalized RP-HPLC-temperature profiles of citropin 1.1 and aurein 1.2, revealed an enhanced tendency to self-association than that of their retro analogs.


Assuntos
Proteínas de Anfíbios , Antibacterianos , Peptídeos Catiônicos Antimicrobianos , Klebsiella pneumoniae/crescimento & desenvolvimento , Proteínas de Anfíbios/química , Proteínas de Anfíbios/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...